Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.336
Filtrar
1.
Int J Dev Biol ; 68(1): 39-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591692

RESUMO

Keratin 17 (K17) is thought to be a candidate target gene for regulation by Lymphoid Enhancer Factor-1 (Lef-1). K17 is a marker that distinguishes junctional epithelium (JE) from epithelial rests of Malassez (ERM). However, the relationship of Lef-1 to K17 is not clear in this context. Moreover, the expression of other keratins such as K5, K6, K7 and K16 is not reported. Therefore, the aim of our study was to assay the expression of K5, K6, K7, K14, K16, K17 and Lef-1 in postnatal developing teeth, and clarify the corresponding immunophenotypes of the JE and ERM. Upper jaws of Wistar rats aged from postnatal (PN) day 3.5 to PN21 were used and processed for immunohistochemistry. K5 and K14 were intensely expressed in inner enamel epithelium (IEE), reduced enamel epithelium (REE), ERM and JE. There was no staining for K16 in the tissue, except for strong staining in the oral epithelium. Specifically, at PN3.5 and PN7, K17 was initially strongly expressed and then negative in the IEE. At PN16 and PN21, both REE and ERM were strongly stained for K17, whereas K17 was negative in the JE. In addition, K6, K7 and Lef-1 were not detected in any tissue investigated. REE and ERM have an identical keratin expression pattern before eruption, while JE differs from ERM in the expression of K17 after eruption. The expression of K17 does not coincide with that of Lef-1. These data indicate that JE has a unique phenotype different from ERM, which is of odontogenic origin.


Assuntos
Inserção Epitelial , Descanso , Ratos , Animais , Inserção Epitelial/metabolismo , Ratos Wistar , Epitélio/metabolismo , Imuno-Histoquímica , Queratinas/metabolismo
2.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575972

RESUMO

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Assuntos
Galinhas , Plumas , Animais , Anaerobiose , Galinhas/metabolismo , Hidrogênio/metabolismo , Queratinas/metabolismo , Metano/metabolismo , Biocombustíveis , Reatores Biológicos
3.
In Vitro Cell Dev Biol Anim ; 60(3): 236-248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502372

RESUMO

The epidermis is largely composed of keratinocytes (KCs), and the proliferation and differentiation of KCs from the stratum basale to the stratum corneum is the cellular hierarchy present in the epidermis. In this study, we explore the differentiation abilities of human hematopoietic stem cells (HSCs) into KCs. Cultured HSCs positive for CD34, CD45, and CD133 with prominent telomerase activity were induced with keratinocyte differentiation medium (KDM), which is composed of bovine pituitary extract (BPE), epidermal growth factor (EGF), insulin, hydrocortisone, epinephrine, transferrin, calcium chloride (CaCl2), bone morphogenetic protein 4 (BMP4), and retinoic acid (RA). Differentiation was monitored through the expression of cytokeratin markers K5 (keratin 5), K14 (keratin 14), K10 (keratin 10), K1 (keratin 1), transglutaminase 1 (TGM1), involucrin (IVL), and filaggrin (FLG) on day 0 (D0), day 6 (D6), day 11 (D11), day 18 (D18), day 24 (D24), and day 30 (D30) using immunocytochemistry, fluorescence microscopy, flow cytometry, qPCR, and Western blotting. The results revealed the expression of K5 and K14 genes in D6 cells (early keratinocytes), K10 and K1 genes in D11-D18 cells (mature keratinocytes) with active telomerase enzyme, and FLG, IVL, and TGM1 in D18-D24 cells (terminal keratinocytes), and by D30, the KCs were completely enucleated similar to cornified matrix. This method of differentiation of HSCs to KCs explains the cellular order exists in the normal epidermis and opens the possibility of exploring the use of human HSCs in the epidermal differentiation.


Assuntos
Telomerase , Humanos , Animais , Bovinos , Telomerase/genética , Telomerase/metabolismo , Queratinócitos/metabolismo , Epiderme/metabolismo , Células Epidérmicas/metabolismo , Queratinas/metabolismo , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular
4.
Nat Commun ; 15(1): 2328, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499530

RESUMO

Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.


Assuntos
Queratinas Específicas do Cabelo , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Pele/metabolismo , Cabelo/metabolismo , Queratinas/genética , Queratinas/metabolismo , Anfíbios , Mamíferos/metabolismo
5.
Int J Biol Macromol ; 263(Pt 1): 130688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458294

RESUMO

This study reports the rational engineering of the S1' substrate-binding pocket of a thermally-stable keratinase from Pseudomonas aeruginosa 4-3 (4-3Ker) to improve substrate specificity to typical keratinase (K/C > 0.5) and catalytic activity without compromising thermal stability for efficient keratin degradation. Of 10 chosen mutation hotspots in the S1' substrate-binding pocket, the top three mutations M128R, A138V, and V142I showing the best catalytic activity and substrate specificity were identified. Their double and triple combinatorial mutants synergistically overcame limitations of single mutants, fabricating an excellent M128R/A138V/V142I triple mutant which displayed a 1.21-fold increase in keratin catalytic activity, 1.10-fold enhancement in keratin/casein activity ratio, and a 3.13 °C increase in half-inactivation temperature compared to 4-3Ker. Molecular dynamics simulations revealed enhanced flexibility of critical amino acid residues at the substrate access tunnel, improved global protein rigidity, and heightened hydrophobicity within the active site likely underpinned the increased catalytic activity and substrate specificity. Additionally, the triple mutant improved the feather degradation rate by 32.86 % over the wild-type, far exceeding commercial keratinase in substrate specificity and thermal stability. This study exemplified engineering a typical keratinase with enhanced substrate specificity, catalytic activity, and thermal stability from thermally-stable 4-3Ker, providing a more robust tool for feather degradation.


Assuntos
Queratinas , Peptídeo Hidrolases , Queratinas/metabolismo , Especificidade por Substrato , Peptídeo Hidrolases/metabolismo , Temperatura , Concentração de Íons de Hidrogênio
6.
ACS Appl Bio Mater ; 7(3): 1513-1525, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38354359

RESUMO

Skin is the body barrier that constrains the infiltration of particles and exogenous aggression, in which the hair follicle plays an important role. Recent studies have shown that small particles can penetrate the skin barrier and reach the hair follicle, making them a potential avenue for delivering hair growth-related substances. Interestingly, keratin-based microspheres are widely used as drug delivery carriers in various fields. In this current study, we pursue the effect of newly synthesized 3D spherical keratin particles on inducing hair growth in C57BL/6 male mice and in human hair follicle dermal papilla cells. The microspheres were created from partially sulfonated, water-soluble keratin. The keratin microspheres swelled in water to form spherical gels, which were used for further experiments. Following topical application for a period of 20 days, we observed a regrowth of hair in the previously depleted area on the dorsal part of the mice in the keratin microsphere group. This observation was accompanied by the regulation of hair-growth-related pathways as well as changes in markers associated with epidermal cells, keratin, and collagen. Interestingly, microsphere keratin treatment enhanced the cell proliferation and the expression of hair growth markers in dermal papilla cells. Based on our data, we propose that 3D spherical keratin has the potential to specifically target hair follicle growth and can be employed as a carrier for promoting hair growth-related agents.


Assuntos
Cabelo , Queratinas , Masculino , Camundongos , Humanos , Animais , Queratinas/metabolismo , Queratinas/farmacologia , Microesferas , Camundongos Endogâmicos C57BL , Cabelo/metabolismo , Água
7.
J Exp Clin Cancer Res ; 43(1): 64, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424636

RESUMO

Colorectal cancer (CRC) is a heterogenous malignancy underpinned by dysregulation of cellular signaling pathways. Previous literature has implicated aberrant JAK/STAT3 signal transduction in the development and progression of solid tumors. In this study we investigate the effectiveness of inhibiting JAK/STAT3 in diverse CRC models, establish in which contexts high pathway expression is prognostic and perform in depth analysis underlying phenotypes. In this study we investigated the use of JAK inhibitors for anti-cancer activity in CRC cell lines, mouse model organoids and patient-derived organoids. Immunohistochemical staining of the TransSCOT clinical trial cohort, and 2 independent large retrospective CRC patient cohorts was performed to assess the prognostic value of JAK/STAT3 expression. We performed mutational profiling, bulk RNASeq and NanoString GeoMx® spatial transcriptomics to unravel the underlying biology of aberrant signaling. Inhibition of signal transduction with JAK1/2 but not JAK2/3 inhibitors reduced cell viability in CRC cell lines, mouse, and patient derived organoids (PDOs). In PDOs, reduced Ki67 expression was observed post-treatment. A highly significant association between high JAK/STAT3 expression within tumor cells and reduced cancer-specific survival in patients with high stromal invasion (TSPhigh) was identified across 3 independent CRC patient cohorts, including the TrasnSCOT clinical trial cohort. Patients with high phosphorylated STAT3 (pSTAT3) within the TSPhigh group had higher influx of CD66b + cells and higher tumoral expression of PDL1. Bulk RNAseq of full section tumors showed enrichment of NFκB signaling and hypoxia in these cases. Spatial deconvolution through GeoMx® demonstrated higher expression of checkpoint and hypoxia-associated genes in the tumor (pan-cytokeratin positive) regions, and reduced lymphocyte receptor signaling in the TME (pan-cytokeratin- and αSMA-) and αSMA (pan-cytokeratin- and αSMA +) areas. Non-classical fibroblast signatures were detected across αSMA + regions in cases with high pSTAT3. Therefore, in this study we have shown that inhibition of JAK/STAT3 represents a promising therapeutic strategy for patients with stromal-rich CRC tumors. High expression of JAK/STAT3 proteins within both tumor and stromal cells predicts poor outcomes in CRC, and aberrant signaling is associated with distinct spatially-dependant differential gene expression.


Assuntos
Neoplasias Colorretais , Humanos , Animais , Camundongos , Estudos Retrospectivos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transdução de Sinais , Hipóxia , Queratinas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral
8.
Arch Microbiol ; 206(3): 99, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351393

RESUMO

Feather waste is a highly prevalent form of keratinous waste that is generated by the poultry industry. The global daily production of feather waste has been shown to approach 5 million tons, typically being disposed of through methods such as dumping, landfilling, or incineration which contribute significantly to environmental pollutions. The proper management of these keratinous wastes is crucial to avoid environmental contamination. The study was carried out to isolate the keratinolytic fungi from the poultry disposal sites of different region of North-East India to evaluate its potential in bioremediation of the feathers wastes. Out of 12 fungal strains isolated from the sites, the fungus showing the highest zone of hydrolysis on both the skim milk and keratin agar medium was selected for the study and the molecular identification of the isolate was performed through DNA sequence analysis by amplifying the internal transcribed spacer (ITS) region. The sequence results showed higher similarity (above 95%) with Aspergillus spp. and was named Aspergillus sp. Iro-1. The strain was further analyzed for its feather degrading potential which was performed in submerged conditions under optimized conditions. The study showed that the strain could effectively degrade the feathers validated through weight loss method, and the structural deformations in the feathers were visualized through scanning electron microscopy (SEM). Aspergillus sp. Iro-1 was obtained from the southern region of Assam. It would be of great importance as the implementation of this sp. can help in the bioremediation of feathers wastes in this region. This is the first study of identification of feather degrading fungus from southern part of Assam (Barak).


Assuntos
Peptídeo Hidrolases , Aves Domésticas , Animais , Aves Domésticas/microbiologia , Peptídeo Hidrolases/metabolismo , Fungos/genética , Fungos/metabolismo , Hidrólise , Biodegradação Ambiental , Queratinas/metabolismo , Concentração de Íons de Hidrogênio , Galinhas , Temperatura
9.
Contact Dermatitis ; 90(4): 385-393, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38205911

RESUMO

BACKGROUND: Common hyperkeratotic palmar skin lesions include chronic hand eczema (CHE), hyperkeratotic hand eczema (HHE), palmar psoriasis (PP). However, clinically differentiating these disorders is often challenging. OBJECTIVES: To compare the expressions of keratin (K) 5, K9, K14 and involucrin in palmar hyperkeratotic lesions (HHE, CHE and PP). MATERIALS AND METHODS: Immunohistochemical staining was performed on skin biopsy specimens obtained from the palms of patients clinically diagnosed with CHE, HHE and PP (n = 21, 24 and 18, respectively). RESULTS: K5 and K14 expression levels were higher in the spinous and granular layers of PP and HHE compared to CHE. Involucrin was expressed in the basal layer of PP and HHE but not in CHE. K9 expression was decreased in PP and HHE compared to CHE. CONCLUSION: Keratin and involucrin expression in the epidermis are markers of keratinocyte differentiation. Expression levels of keratin and involucrin were similar between the HHE and PP groups, suggesting that HHE shares pathogenesis with PP rather than CHE.


Assuntos
Dermatite Alérgica de Contato , Eczema , Precursores de Proteínas , Psoríase , Dermatopatias , Humanos , Queratinas/metabolismo
10.
Dev Biol ; 508: 64-76, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190932

RESUMO

Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/ß-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.


Assuntos
Ectoderma , Plumas , Animais , Embrião de Galinha , Plumas/metabolismo , Ectoderma/metabolismo , Evolução Biológica , Aves , Queratinas/metabolismo , Morfogênese
11.
Int J Biol Macromol ; 260(Pt 2): 129659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266845

RESUMO

KerJY-23 was a novel keratinase from feather-degrading Ectobacillus sp. JY-23, but its enzymatic characterization and structure are still unclear. In this study, the KerJY-23 was obtained by heterologous expression in Escherichia coli BL21(DE3), and enzymatic properties indicated that KerJY-23 was optimal at 60 °C and pH 9.0 and could be promoted by divalent metal ions or reducing agents. Furthermore, KerJY-23 had a broad substrate specificity towards casein, soluble keratin, and expanded feather powder, but its in vitro degradation against chicken feathers required an additional reducing agent. Homology modeling indicated that KerJY-23 contained a highly conserved zinc-binding HELTH motif and a His-Asp-Ser catalytic triad that belonged to the typical characteristics of M4-family metallo-keratinase and serine-keratinase, respectively. Molecular docking revealed that KerJY-23 achieved a reinforced binding on feather keratin via abundant hydrogen bonding interactions. This work not only deepened understanding of the novel and interesting metallo-serine keratinase KerJY-23, but also provided a theoretical basis for realizing the efficient use of waste feather keratin.


Assuntos
Galinhas , Serina , Animais , Serina/metabolismo , Galinhas/metabolismo , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Plumas/metabolismo , Queratinas/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
12.
Curr Opin Cell Biol ; 86: 102282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000362

RESUMO

Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.


Assuntos
Desmossomos , Queratinas , Camundongos , Animais , Queratinas/metabolismo , Desmossomos/metabolismo , Citoesqueleto/metabolismo , Epitélio/metabolismo , Filamentos Intermediários/metabolismo
13.
J Sci Food Agric ; 104(3): 1741-1755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37862230

RESUMO

BACKGROUND: Porcupine quills, a by-product of porcupine pork, are rich in keratin, which is an excellent source of bioactive peptides. The objective of this study was to investigate the underlying mechanism of anti-proliferation effect of porcupine quills keratin peptides (PQKPs) on MCF-7 cells. RESULTS: Results showed that PQKPs induced MCF-7 cells apoptosis by significantly decreasing the secretion level of anti-apoptosis protein Bcl-2 and increasing the secretion levels of pro-apoptosis proteins Bax, cytochrome c, caspase 9, caspase 3 and PARP. PQKPs also arrested the cell cycle at G0/G1 phase via remarkably reducing the protein levels of CDK4 and enhancing the protein levels of p53 and p21. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis identified nine peptides with molecular weights less than 1000 Da in PQKPs. Molecular docking results showed that TPGPPT and KGPAC identified from PQKPs could bind with p53 mutant and Bcl-2 protein by conventional hydrogen bonds, carbon hydrogen bonds and van der Waals force. Furthermore, the anti-proliferation impact of synthesized peptides (TPGPPT and KGPAC) was shown in MCF-7 cells. CONCLUSION: These findings indicated that PQKPs suppressed the proliferation of MCF-7 breast cancer cells by triggering apoptosis and G0/G1 cell cycle arrest. Moreover, the outcome of this study will bring fresh insights into the production and application of animal byproducts. © 2023 Society of Chemical Industry.


Assuntos
Neoplasias da Mama , Porcos-Espinhos , Humanos , Animais , Feminino , Células MCF-7 , Caspases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Porcos-Espinhos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Queratinas/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
14.
Anat Rec (Hoboken) ; 307(2): 414-425, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818703

RESUMO

Taste sensitivity decreases with age. Therefore, we investigated the histological and immunohistochemical changes in the receptive fields circumvallate papilla (CvP) and fungiform papilla (FfP) to explore the mechanism underlying age-related changes in taste sensitivity in 6- to 72-week-old rats. We analyzed papilla size, the thickness of the keratin layer of the papilla and stratified squamous epithelium, taste bud size, the keratin layer around the taste pores in the CvP and FfP, and the number and distribution of taste buds in the CvP coronal section. We further assessed the expression of marker proteins for Type II and III cells, phospholipase C subtype beta 2 (PLCß2), and synaptosomal-associated protein 25 (SNAP-25). The cellular activity of these taste cells was examined through co-localization with the senescence cell marker protein-30 (SMP30). There were no differences in the number of taste bud sections in the CvP among the age groups. However, the size of the CvP increased and the density of the taste bud area in the CvP area decreased with increasing age. In contrast, the number of cells with co-expression of SMP30, PLCß2, and SNAP-25 decreased with age. Furthermore, the morphological structures of the CvP, FfP, and taste buds in these regions changed with age, but not the overall taste bud number in the CvP coronal section. The decrease in cell count with co-expression of SMP30 and PLCß2, or SNAP-25 may indicate reduced cellular functions of taste cells with aging.


Assuntos
Papilas Gustativas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Epitélio/metabolismo , Envelhecimento , Queratinas/metabolismo , Língua/anatomia & histologia
15.
Oncol Rep ; 51(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975220

RESUMO

Breast cancer is the most frequently diagnosed cancer in women worldwide. Although dramatically increased survival rates of early diagnosed cases have been observed, late diagnosed patients and metastatic cancer may still be considered fatal. The present study's main focus was on cancer­associated fibroblasts (CAFs) which is an active component of the tumor microenvironment (TME) regulating the breast cancer ecosystem. Transcriptomic profiling and analysis of CAFs isolated from breast cancer skin metastasis, cutaneous basal cell carcinoma, and squamous cell carcinoma unravelled major gene candidates such as IL6, VEGFA and MFGE8 that induced co­expression of keratins­8/­14 in the EM­G3 cell line derived from infiltrating ductal breast carcinoma. Western blot analysis of selected keratins (keratin­8, ­14, ­18, ­19) and epithelial­mesenchymal transition­associated markers (SLUG, SNAIL, ZEB1, E­/N­cadherin, vimentin) revealed specific responses pointing to certain heterogeneity of the studied CAF populations. Experimental in vitro treatment using neutralizing antibodies against IL-6, VEGF­A and MFGE8 attenuated the modulatory effect of CAFs on EM­G3 cells. The present study provided novel data in characterizing and understanding the interactions between CAFs and EM­G3 cells in vitro. CAFs of different origins support the pro­inflammatory microenvironment and influence the biology of breast cancer cells. This observation potentially holds significant interest for the development of novel, clinically relevant approaches targeting the TME in breast cancer. Furthermore, its implications extend beyond breast cancer and have the potential to impact a wide range of other cancer types.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Feminino , Humanos , Antígenos de Superfície , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Queratinas/genética , Queratinas/metabolismo , Células MCF-7 , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Prognóstico , Transcriptoma , Microambiente Tumoral/genética , 60468
16.
Waste Manag ; 174: 528-538, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134540

RESUMO

Feather waste, a rich source of proteins, has traditionally been processed through high-temperature puffing and acid-base hydrolysis, contributing to generation of greenhouse gases and H2S. To address this issue, we employed circular economy techniques to recover the nutritional value of feather waste. Streptomyces sp. SCUT-3, an efficient proteolytic and chitinolytic bacterium, was isolated for feather degradation previously. This study aimed to valorize feather waste for feed purposes by enhancing its feather transformation ability through promoter optimization. Seven promoters were identified through omics analysis and compared to a common Streptomyces promoter ermE*p. The strongest promoter, p24880, effectively enhanced the expression of three candidate keratinases (Sep39, Sep40, and Sep53). The expression efficiency of double-, triple-p24880 and sandwich p24880-sep39-p24880 promoters were further verified. The co-overexpression strain SCUT-3-p24880-sep39-p24880-sep40 exhibited a 16.21-fold increase in keratinase activity compared to the wild-type. Using this strain, a solid-state fermentation process was established that increased the feather/water ratio (w/w) to 1:1.5, shortened the fermentation time to 2.5 days, and increased soluble peptide and free amino acid yields to 0.41 g/g and 0.14 g/g, respectively. The resulting has high protein content (90.49 %), with high in vitro digestibility (94.20 %). This method has the potential to revolutionize the feather waste processing industry.


Assuntos
Plumas , Streptomyces , Animais , Plumas/química , Streptomyces/genética , Streptomyces/metabolismo , Fermentação , Galinhas/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/química , Queratinas/metabolismo , Concentração de Íons de Hidrogênio
17.
Mol Med Rep ; 29(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099343

RESUMO

To investigate the effect of keratin 23 (KRT23) on the anticancer activity of melatonin (MLT) against gastric cancer (GC) cells, microarray analysis was applied to screen differentially expressed genes in AGS GC cells following MLT treatment. Western blotting was used to detect the expression of KRT23 in GC cells and normal gastric epithelial cell line GES­1. KRT23 knockout was achieved by CRISPR/Cas9. Assays of cell viability, colony formation, cell cycle, electric cell­substrate impedance sensing and western blotting were conducted to reveal the biological functions of KRT23­knockout cells without or with MLT treatment. Genes downregulated by MLT were enriched in purine metabolism, pyrimidine metabolism, genetic information processing and cell cycle pathway. Expression levels of KRT23 were downregulated by MLT treatment. Expression levels of KRT23 in AGS and SNU­216 GC cell lines were significantly higher compared with normal gastric epithelial cell line GES­1. KRT23 knockout led to reduced phosphorylation of ERK1/2 and p38, arrest of the cell cycle and inhibition of GC cell proliferation. Moreover, KRT23 knockout further enhanced the inhibitory activity of MLT on the tumor cell proliferation by inhibiting the phosphorylation of p38/ERK. KRT23 knockout contributes to the antitumor effects of MLT in GC via suppressing p38/ERK phosphorylation. In the future, KRT23 might be a potential prognostic biomarker and a novel molecular target for GC.


Assuntos
Melatonina , Neoplasias Gástricas , Humanos , Melatonina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Queratinas/metabolismo , Regulação Neoplásica da Expressão Gênica
18.
Sci Rep ; 13(1): 19989, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968282

RESUMO

This study addresses the environmental risks associated with the accumulation of keratin waste from poultry, which is resistant to conventional protein degradation methods. To tackle this issue, microbial keratinases have emerged as promising tools for transforming resilient keratin materials into valuable products. We focus on the Metalloprotease (MetPr) gene isolated from novel Pichia kudriavzevii YK46, sequenced, and deposited in the NCBI GenBank database with the accession number OQ511281. The MetPr gene encodes a protein consisting of 557 amino acids and demonstrates a keratinase activity of 164.04 U/ml. The 3D structure of the protein was validated using Ramachandran's plot, revealing that 93% and 97.26% of the 557 residues were situated within the most favoured region for the MetPr proteins of template Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Computational analyses were employed to determine the binding affinities between the deduced protein and beta keratin. Molecular docking studies elucidated the optimal binding affinities between the metalloprotease (MetPr) and beta-keratin, yielding values of - 260.75 kcal/mol and - 257.02 kcal/mol for the template strains Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Subsequent molecular cloning and expression of the MetPr gene in E. coli DH5α led to a significantly higher keratinase activity of 281 ± 12.34 U/ml. These findings provide valuable insights into the potential of the MetPr gene and its encoded protein for keratin waste biotransformation, with implications for addressing environmental concerns related to keratinous waste accumulation.


Assuntos
Escherichia coli , Plumas , Animais , Plumas/metabolismo , Escherichia coli/genética , Simulação de Acoplamento Molecular , Pichia/metabolismo , Metaloproteases/metabolismo , Queratinas/genética , Queratinas/metabolismo , Clonagem Molecular
19.
Anal Methods ; 15(46): 6468-6475, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37982303

RESUMO

Keratin, in the form of coarse sheep wool, has been identified as an undervalued natural resource, which with the appropriate tools (e.g. a keratinase biocatalyst) can be repurposed for various textile and industrial biotechnology applications. For these purposes, we describe a novel method for identifying keratinase activity through the use of α-keratin azure (KA), an anthraquinone dyed substrate. A colourimetric method monitored the keratinase activity of Proteinase K (PK), which degrades the KA substrate and releases soluble products that are observed at 595 nm. Initially, the azure dye standard, Remazol Brilliant Blue R (RBBR), was used to calibrate the assay and allowed the kinetics of the keratinase-catalysed reaction to be determined. The assay was also used to investigate substrate pre-treatment, as well as different reaction quenching/work up conditions. Milling and washing of the KA substrate provided the best reproducibility and centrifugation was the most effective method for removing unreacted starting material. This assay was then applied to investigate the reduction of the keratin disulfide bond on keratinase-catalysed degradation. This optimised, improved and robust method will enable identification of keratinases ideally suited for application in the valorisation of the α-keratin found in natural wool fibres.


Assuntos
Queratinas , Peptídeo Hidrolases , Animais , Ovinos , Queratinas/metabolismo , Reprodutibilidade dos Testes , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Citoesqueleto/metabolismo
20.
Nat Genet ; 55(12): 2175-2188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985817

RESUMO

Cervical squamous cell carcinoma (CSCC) exhibits a limited response to immune-checkpoint blockade. Here we conducted a multiomic analysis encompassing single-cell RNA sequencing, spatial transcriptomics and spatial proteomics, combined with genetic and pharmacological perturbations to systematically develop a high-resolution and spatially resolved map of intratumoral expression heterogeneity in CSCC. Three tumor states (epithelial-cytokeratin, epithelial-immune (Epi-Imm) and epithelial senescence), recapitulating different stages of squamous differentiation, showed distinct tumor immune microenvironments. Bidirectional interactions between epithelial-cytokeratin malignant cells and immunosuppressive cancer-associated fibroblasts form an immune exclusionary microenvironment through transforming growth factor ß pathway signaling mediated by FABP5. In Epi-Imm tumors, malignant cells interact with natural killer and T cells through interferon signaling. Preliminary analysis of samples from a cervical cancer clinical trial ( NCT04516616 ) demonstrated neoadjuvant chemotherapy induces a state transition to Epi-Imm, which correlates with pathological complete remission following treatment with immune-checkpoint blockade. These findings deepen the understanding of cellular state diversity in CSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Neoplasias do Colo do Útero/genética , Inibidores de Checkpoint Imunológico , Relevância Clínica , Ecossistema , Multiômica , Queratinas/metabolismo , Queratinas/uso terapêutico , Microambiente Tumoral/genética , Proteínas de Ligação a Ácido Graxo/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...